Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38463990

RESUMEN

Loss of dopamine neurons causes motor deterioration in Parkinson's disease patients. We have previously reported that in addition to acute motor impairment, the impaired motor behavior is encoded into long-term memory in an experience-dependent and task-specific manner, a phenomenon we refer to as aberrant inhibitory motor learning. Although normal motor learning and aberrant inhibitory learning oppose each other and this is manifested in apparent motor performance, in the present study, we found that normal motor memory acquired prior to aberrant inhibitory learning remains preserved in the brain, suggesting the existence of independent storage. To investigate the neuronal circuits underlying these two opposing memories, we took advantage of the RNA-binding protein YTHDF1, an m 6 A RNA methylation reader involved in the regulation of protein synthesis and learning/memory. Conditional deletion of Ythdf1 in either D1 or D2 receptor-expressing neurons revealed that normal motor memory is stored in the D1 (direct) pathway of the basal ganglia, while inhibitory memory is stored in the D2 (indirect) pathway. Furthermore, fiber photometry recordings of GCaMP signals from striatal D1 (dSPN) and D2 (iSPN) receptor-expressing neurons support the preservation of normal memory in the direct pathway after aberrant inhibitory learning, with activities of dSPN predictive of motor performance. Finally, a computational model based on activities of motor cortical neurons, dSPN and iSPN neurons, and their interactions through the basal ganglia loops supports the above observations. These findings have important implications for novel approaches in treating Parkinson's disease by reactivating preserved normal memory, and in treating hyperkinetic movement disorders such as chorea or tics by erasing aberrant motor memories.

2.
Hum Mol Genet ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483349

RESUMEN

RNA methylation of N6-methyladenosine (m6A) is emerging as a fundamental regulator of every aspect of RNA biology. RNA methylation directly impacts protein production to achieve quick modulation of dynamic biological processes. However, whether RNA methylation regulates mitochondrial function is not known, especially in neuronal cells which require a high energy supply and quick reactive responses. Here we show that m6A RNA methylation regulates mitochondrial function through promoting nuclear-encoded mitochondrial complex subunit RNA translation. Conditional genetic knockout of m6A RNA methyltransferase Mettl14 (Methyltransferase like 14) by Nestin-Cre together with metabolomic analysis reveals that Mettl14 knockout-induced m6A depletion significantly downregulates metabolites related to energy metabolism. Furthermore, transcriptome-wide RNA methylation profiling of wild type and Mettl14 knockout mouse brains by m6A-Seq shows enrichment of methylation on mitochondria-related RNA. Importantly, loss of m6A leads to a significant reduction in mitochondrial respiratory capacity and membrane potential. These functional defects are paralleled by the reduced expression of mitochondrial electron transport chain complexes, as well as decreased mitochondrial super-complex assembly and activity. Mechanistically, m6A depletion decreases the translational efficiency of methylated RNA encoding mitochondrial complex subunits through reducing their association with polysomes, while not affecting RNA stability. Together, these findings reveal a novel role for RNA methylation in regulating mitochondrial function. Given that mitochondrial dysfunction and RNA methylation have been increasingly implicate in neurodegenerative disorders, our findings not only provide insights into fundamental mechanisms regulating mitochondrial function, but also open up new avenues for understanding the pathogenesis of neurological diseases.

3.
Bioorg Chem ; 142: 106950, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37924753

RESUMEN

The bromodomain of CREB (cyclic-AMP response element binding protein) binding protein (CBP) is an epigenetic "reader" and plays a key role in transcriptional regulation. CBP bromodomain is considered to be a promising therapeutic target for acute myeloid leukemia (AML). Herein, we report the discovery of a series of 1-(indolizin-3-yl)ethan-1-one derivatives as potent, and selective CBP bromodomain inhibitors focused on improving cellular potency. One of the most promising compounds, 7e (Y08262), inhibits the CBP bromodomain at the nanomolar level (IC50 = 73.1 nM) with remarkable selectivity. In addition, the new inhibitor also displays potent inhibitory activities in AML cell lines. Collectively, this study provides a new lead compound for further validation of CBP bromodomain as a molecular target for AML drug development.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Dominios Proteicos , Leucemia Mieloide Aguda/tratamiento farmacológico , Línea Celular Tumoral
4.
Mol Cell ; 83(23): 4304-4317.e8, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37949069

RESUMEN

RNA-binding proteins (RBPs) control messenger RNA fate in neurons. Here, we report a mechanism that the stimuli-induced neuronal translation is mediated by phosphorylation of a YTHDF1-binding protein FMRP. Mechanistically, YTHDF1 can condense with ribosomal proteins to promote the translation of its mRNA targets. FMRP regulates this process by sequestering YTHDF1 away from the ribosome; upon neuronal stimulation, FMRP becomes phosphorylated and releases YTHDF1 for translation upregulation. We show that a new small molecule inhibitor of YTHDF1 can reverse fragile X syndrome (FXS) developmental defects associated with FMRP deficiency in an organoid model. Our study thus reveals that FMRP and its phosphorylation are important regulators of activity-dependent translation during neuronal development and stimulation and identifies YTHDF1 as a potential therapeutic target for FXS in which developmental defects caused by FMRP depletion could be reversed through YTHDF1 inhibition.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Humanos , Fosforilación , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Neuronas/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Proteínas Ribosómicas/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
5.
Bioorg Chem ; 135: 106495, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37004437

RESUMEN

Multivalency is an attractive strategy for effective binding to target protein. Bromodomain and extra-terminal (BET) family features two tandem bromodomains (BD1, BD2), which are considered to be potential new targets for prostate cancer. Herein, we report the rational design, optimization, and evaluation of a class of novel BET bivalent inhibitors based on our monovalent BET inhibitor 7 (Y06037). The representative bivalent inhibitor 17b effectively inhibited the cell growth of LNCaP, exhibiting 32 folds more potency than monovalent inhibitor 7. Besides, 17b induced 95.1 % PSA regression in LNCaP cell at 2 µM. Docking study was further carried out to reveal the potential binding mode of 17b with two BET bromodomains. Our study demonstrates that 17b (Y13021) is a promising BET bivalent inhibitor for the treatment of prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Factores de Transcripción , Masculino , Humanos , Factores de Transcripción/metabolismo , Isoxazoles/farmacología , Dominios Proteicos , Neoplasias de la Próstata/tratamiento farmacológico , Proliferación Celular
6.
Proc Natl Acad Sci U S A ; 120(12): e2213093120, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36920928

RESUMEN

Dopamine (DA) loss in Parkinson's disease (PD) causes debilitating motor deficits. However, dopamine is also widely linked to reward prediction and learning, and the contribution of dopamine-dependent learning to movements that are impaired in PD-which often do not lead to explicit rewards-is unclear. Here, we used two distinct motor tasks to dissociate dopamine's acute motoric effects vs. its long-lasting, learning-mediated effects. In dopamine-depleted mice, motor task performance gradually worsened with task exposure. Task experience was critical, as mice that remained in the home cage during the same period were relatively unimpaired when subsequently probed on the task. Repeated dopamine replacement treatments acutely rescued deficits and gradually induced long-term rescue that persisted despite treatment withdrawal. Surprisingly, both long-term rescue and parkinsonian performance decline were task specific, implicating dopamine-dependent learning. D1R activation potently induced acute rescue that gradually consolidated into long-term rescue. Conversely, reduced D2R activation potently induced parkinsonian decline. In dopamine-depleted mice, either D1R activation or D2R activation prevented parkinsonian decline, and both restored balanced activation of direct vs. indirect striatal pathways. These findings suggest that reinforcement and maintenance of movements-even movements not leading to explicit rewards-are fundamental functions of dopamine and provide potential mechanisms for the hitherto unexplained "long-duration response" by dopaminergic therapies in PD.


Asunto(s)
Dopamina , Enfermedad de Parkinson , Ratones , Animales , Dopamina/metabolismo , Neuronas/metabolismo , Cuerpo Estriado/metabolismo , Aprendizaje/fisiología , Enfermedad de Parkinson/metabolismo
7.
J Neurosci ; 43(1): 2-13, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36028313

RESUMEN

A question relevant to nicotine addiction is how nicotine and other nicotinic receptor membrane-permeant ligands, such as the anti-smoking drug varenicline (Chantix), distribute in brain. Ligands, like varenicline, with high pKa and high affinity for α4ß2-type nicotinic receptors (α4ß2Rs) are trapped in intracellular acidic vesicles containing α4ß2Rs in vitro Nicotine, with lower pKa and α4ß2R affinity, is not trapped. Here, we extend our results by imaging nicotinic PET ligands in vivo in male and female mouse brain and identifying the trapping brain organelle in vitro as Golgi satellites (GSats). Two PET 18F-labeled imaging ligands were chosen: [18F]2-FA85380 (2-FA) with varenicline-like pKa and affinity and [18F]Nifene with nicotine-like pKa and affinity. [18F]2-FA PET-imaging kinetics were very slow consistent with 2-FA trapping in α4ß2R-containing GSats. In contrast, [18F]Nifene kinetics were rapid, consistent with its binding to α4ß2Rs but no trapping. Specific [18F]2-FA and [18F]Nifene signals were eliminated in ß2 subunit knock-out (KO) mice or by acute nicotine (AN) injections demonstrating binding to sites on ß2-containing receptors. Chloroquine (CQ), which dissipates GSat pH gradients, reduced [18F]2-FA distributions while having little effect on [18F]Nifene distributions in vivo consistent with only [18F]2-FA trapping in GSats. These results are further supported by in vitro findings where dissipation of GSat pH gradients blocks 2-FA trapping in GSats without affecting Nifene. By combining in vitro and in vivo imaging, we mapped both the brain-wide and subcellular distributions of weak-base nicotinic receptor ligands. We conclude that ligands, such as varenicline, are trapped in neurons in α4ß2R-containing GSats, which results in very slow release long after nicotine is gone after smoking.SIGNIFICANCE STATEMENT Mechanisms of nicotine addiction remain poorly understood. An earlier study using in vitro methods found that the anti-smoking nicotinic ligand, varenicline (Chantix) was trapped in α4ß2R-containing acidic vesicles. Using a fluorescent-labeled high-affinity nicotinic ligand, this study provided evidence that these intracellular acidic vesicles were α4ß2R-containing Golgi satellites (GSats). In vivo PET imaging with F-18-labeled nicotinic ligands provided additional evidence that differences in PET ligand trapping in acidic vesicles were the cause of differences in PET ligand kinetics and subcellular distributions. These findings combining in vitro and in vivo imaging revealed new mechanistic insights into the kinetics of weak base PET imaging ligands and the subcellular mechanisms underlying nicotine addiction.


Asunto(s)
Receptores Nicotínicos , Tabaquismo , Ratones , Animales , Masculino , Femenino , Nicotina/farmacología , Vareniclina/metabolismo , Vareniclina/farmacología , Tabaquismo/metabolismo , Ligandos , Receptores Nicotínicos/metabolismo , Tomografía de Emisión de Positrones/métodos , Encéfalo/metabolismo
9.
J Med Chem ; 65(10): 7193-7211, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35507418

RESUMEN

The design and development of agonists selectively targeting thyroid hormone receptor ß (TRß) and TRß mutants remain challenging tasks. In this study, we first adopted the strategy of breaking the "His-Phe switch" to solve two problems, simultaneously. A structure-based design approach was successfully utilized to obtain compound 16g, which is a potent TRß agonist (EC50: 21.0 nM, 85.0% of the maximum efficacy of 1) with outstanding selectivity for TRß over TRα and also effectively activates the TRßH435R mutant. Then, we developed a highly efficient synthetic method for 16g. Our serials of cocrystal structures revealed detailed structural mechanisms in overcoming subtype selectivity and rescuing the H435R mutation. 16g also showed excellent lipid metabolism, safety, metabolic stability, and pharmacokinetic properties. Collectively, 16g is a well-characterized selective and mutation-sensitive TRß agonist for further investigating its function in treating dyslipidemia, nonalcoholic steatohepatitis (NASH), and resistance to thyroid hormone (RTH).


Asunto(s)
Receptores beta de Hormona Tiroidea , Síndrome de Resistencia a Hormonas Tiroideas , Humanos , Mutación , Receptores beta de Hormona Tiroidea/agonistas , Receptores beta de Hormona Tiroidea/genética , Receptores beta de Hormona Tiroidea/metabolismo , Síndrome de Resistencia a Hormonas Tiroideas/genética , Hormonas Tiroideas
10.
Eur J Med Chem ; 236: 114311, 2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385803

RESUMEN

TRIM24 (tripartite motif-containing protein 24) and BRPF1 (bromodomain and PHD finger containing protein 1) are epigenetics "readers" and potential therapeutic targets for cancer and other diseases. Here we describe the structure-guided design of 1-(indolin-1-yl)ethan-1-ones as novel TRIM24/BRPF1 bromodomain inhibitors. The representative compound 20l (Y08624) is a new TRIM24/BRPF1 dual inhibitor, with IC50 values of 0.98 and 1.16 µM, respectively. Cellular activity of 20l was validated by viability assay in prostate cancer (PC) cell lines. In PC xenograft models, 20l suppressed tumor growth (50 mg/kg/day, TGI = 53%) without exhibiting noticeable toxicity. Compound 20l represents a versatile starting point for the development of more potent TRIM24/BRPF1 inhibitors.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras , Proteínas de Unión al ADN , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Animales , Proteínas Portadoras/antagonistas & inhibidores , Línea Celular Tumoral , Proteínas de Unión al ADN/antagonistas & inhibidores , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Dominios Proteicos
11.
J Med Chem ; 65(7): 5760-5799, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35333526

RESUMEN

Pan-bromodomain and extra terminal (Pan-BET) inhibitors show profound efficacy but exhibit pharmacology-driven toxicities in clinical trials. The development of domain-selective BET inhibitors to separate efficacy and toxicity is urgently needed. Herein, we report a series of furo[3,2-c]pyridin-4(5H)-one derivatives as novel BD2-selective BET inhibitors. The representative compound 8l (XY153) potently bound to BRD4 BD2 with an half-maximum inhibitory concentration (IC50) value of 0.79 nM and displayed 354-fold selectivity over BRD4 BD1. Besides, 8l exhibited 6-fold BRD4 BD2 domain selectivity over other BET BD2 domains. Compound 8l displayed potent antiproliferative activity against multiple tumor cell lines, especially MV4-11 (IC50 = 0.55 nM), while showing weak cytotoxicity against the normal lung fibroblast cell line. It highlights the safety profile of this series of BD2 inhibitors. 8l also demonstrated good metabolic stability in vitro. These data indicate that 8l may serve as a new and valuable lead compound for the development of potential therapeutics against acute myeloid leukemia (AML).


Asunto(s)
Antineoplásicos , Proteínas Nucleares , Antineoplásicos/farmacología , Proteínas de Ciclo Celular , Línea Celular Tumoral , Dominios Proteicos , Factores de Transcripción
13.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217610

RESUMEN

Pyridox(am)ine 5 ' -phosphate oxidase (PNPO) catalyzes the rate-limiting step in the synthesis of pyridoxal 5 ' -phosphate (PLP), the active form of vitamin B6 required for the synthesis of neurotransmitters gamma-aminobutyric acid (GABA) and the monoamines. Pathogenic variants in PNPO have been increasingly identified in patients with neonatal epileptic encephalopathy and early-onset epilepsy. These patients often exhibit different types of seizures and variable comorbidities. Recently, the PNPO gene has also been implicated in epilepsy in adults. It is unclear how these phenotypic variations are linked to specific PNPO alleles and to what degree diet can modify their expression. Using CRISPR-Cas9, we generated four knock-in Drosophila alleles, hWT , hR116Q , hD33V , and hR95H , in which the endogenous Drosophila PNPO was replaced by wild-type human PNPO complementary DNA (cDNA) and three epilepsy-associated variants. We found that these knock-in flies exhibited a wide range of phenotypes, including developmental impairments, abnormal locomotor activities, spontaneous seizures, and shortened life span. These phenotypes are allele dependent, varying with the known biochemical severity of these mutations and our characterized molecular defects. We also showed that diet treatments further diversified the phenotypes among alleles, and PLP supplementation at larval and adult stages prevented developmental impairments and seizures in adult flies, respectively. Furthermore, we found that hR95H had a significant dominant-negative effect, rendering heterozygous flies susceptible to seizures and premature death. Together, these results provide biological bases for the various phenotypes resulting from multifunction of PNPO, specific molecular and/or genetic properties of each PNPO variant, and differential allele-diet interactions.


Asunto(s)
Alelos , Dieta , Epilepsia/genética , Fenotipo , Piridoxaminafosfato Oxidasa/genética , Vitamina B 6/metabolismo , Secuencia de Aminoácidos , Animales , Drosophila melanogaster , Humanos , Piridoxaminafosfato Oxidasa/química , Homología de Secuencia de Aminoácido
14.
J Biol Chem ; 298(3): 101590, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35033535

RESUMEN

Ribosomal RNAs (rRNAs) have long been known to carry chemical modifications, including 2'O-methylation, pseudouridylation, N6-methyladenosine (m6A), and N6,6-dimethyladenosine. While the functions of many of these modifications are unclear, some are highly conserved and occur in regions of the ribosome critical for mRNA decoding. Both 28S rRNA and 18S rRNA carry single m6A sites, and while the methyltransferase ZCCHC4 has been identified as the enzyme responsible for the 28S rRNA m6A modification, the methyltransferase responsible for the 18S rRNA m6A modification has remained unclear. Here, we show that the METTL5-TRMT112 methyltransferase complex installs the m6A modification at position 1832 of human 18S rRNA. Our work supports findings that TRMT112 is required for METTL5 stability and reveals that human METTL5 mutations associated with microcephaly and intellectual disability disrupt this interaction. We show that loss of METTL5 in human cancer cell lines and in mice regulates gene expression at the translational level; additionally, Mettl5 knockout mice display reduced body size and evidence of metabolic defects. While recent work has focused heavily on m6A modifications in mRNA and their roles in mRNA processing and translation, we demonstrate here that deorphanizing putative methyltransferase enzymes can reveal previously unappreciated regulatory roles for m6A in noncoding RNAs.


Asunto(s)
Metiltransferasas , ARN Mensajero , ARN Ribosómico 18S , Adenosina/análogos & derivados , Animales , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , ARN Ribosómico 28S/metabolismo
15.
J Med Chem ; 65(1): 785-810, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34962793

RESUMEN

CREB (cyclic-AMP responsive element binding protein) binding protein (CBP) is a potential target for prostate cancer treatment. Herein, we report the structural optimization of a series of 1-(indolizin-3-yl)ethan-1-one compounds as new selective CBP bromodomain inhibitors, aiming to improve cellular potency and metabolic stability. This process led to compound 9g (Y08284), which possesses good liver microsomal stability and pharmacokinetic properties (F = 25.9%). Furthermore, the compound is able to inhibit CBP bromodomain as well as the proliferation, colony formation, and migration of prostate cancer cells. Additionally, the new inhibitor shows promising antitumor efficacy in a 22Rv1 xenograft model (TGI = 88%). This study provides new lead compounds for further development of drugs for the treatment of prostate cancer.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Proteína de Unión a CREB/antagonistas & inhibidores , Indolicidinas/síntesis química , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Antineoplásicos/farmacocinética , Células CACO-2 , Línea Celular Tumoral , Diseño de Fármacos , Humanos , Indolicidinas/farmacocinética , Indolicidinas/farmacología , Masculino , Ratones , Ratones SCID , Microsomas Hepáticos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Ensayo de Tumor de Célula Madre , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Elife ; 102021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-34965204

RESUMEN

Dopaminergic (DA) neurons exert profound influences on behavior including addiction. However, how DA axons communicate with target neurons and how those communications change with drug exposure remains poorly understood. We leverage cell type-specific labeling with large volume serial electron microscopy to detail DA connections in the nucleus accumbens (NAc) of the mouse (Mus musculus) before and after exposure to cocaine. We find that individual DA axons contain different varicosity types based on their vesicle contents. Spatially ordering along individual axons further suggests that varicosity types are non-randomly organized. DA axon varicosities rarely make specific synapses (<2%, 6/410), but instead are more likely to form spinule-like structures (15%, 61/410) with neighboring neurons. Days after a brief exposure to cocaine, DA axons were extensively branched relative to controls, formed blind-ended 'bulbs' filled with mitochondria, and were surrounded by elaborated glia. Finally, mitochondrial lengths increased by ~2.2 times relative to control only in DA axons and NAc spiny dendrites after cocaine exposure. We conclude that DA axonal transmission is unlikely to be mediated via classical synapses in the NAc and that the major locus of anatomical plasticity of DA circuits after exposure to cocaine are large-scale axonal re-arrangements with correlated changes in mitochondria.


Asunto(s)
Axones/efectos de los fármacos , Cocaína/farmacología , Conectoma , Neuronas Dopaminérgicas/efectos de los fármacos , Animales , Axones/ultraestructura , Neuronas Dopaminérgicas/ultraestructura , Ratones , Ratones Transgénicos , Microscopía Electrónica , Mitocondrias/ultraestructura , Núcleo Accumbens/efectos de los fármacos
17.
J Med Chem ; 64(12): 8775-8797, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34121397

RESUMEN

Receptor-related orphan receptor γ (RORγ) has emerged as an attractive therapeutic target for the treatment of cancer and inflammatory diseases. Herein, we report our effort on the discovery, optimization, and evaluation of benzothiazole and benzimidazole derivatives as novel inverse agonists of RORγ. The representative compound 27h (designated as XY123) potently inhibited the RORγ transcription activity with a half-maximal inhibitory concentration (IC50) value of 64 nM and showed excellent selectivity against other nuclear receptors. 27h also potently suppressed cell proliferation, colony formation, and the expression of androgen receptor (AR)-regulated genes in AR-positive prostate cancer cell lines. In addition, 27h demonstrated good metabolic stability and a pharmacokinetic property with reasonable oral bioavailability (32.41%) and moderate half-life (t1/2 = 4.98 h). Significantly, oral administration of compound 27h achieved complete and long-lasting tumor regression in the 22Rv1 xenograft tumor model in mice. Compound 27h may serve as a new valuable lead compound for further development of drugs for the treatment of prostate cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Bencenoacetamidas/uso terapéutico , Bencimidazoles/uso terapéutico , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacocinética , Bencenoacetamidas/síntesis química , Bencenoacetamidas/farmacocinética , Bencimidazoles/síntesis química , Bencimidazoles/farmacocinética , Benzotiazoles/síntesis química , Benzotiazoles/farmacocinética , Benzotiazoles/uso terapéutico , Proliferación Celular/efectos de los fármacos , Agonismo Inverso de Drogas , Estabilidad de Medicamentos , Masculino , Ratones Endogámicos NOD , Ratones SCID , Microsomas Hepáticos/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Ratas Sprague-Dawley , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
18.
PLoS Genet ; 17(2): e1009396, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33617535

RESUMEN

How to respond to starvation determines fitness. One prominent behavioral response is increased locomotor activities upon starvation, also known as Starvation-Induced Hyperactivity (SIH). SIH is paradoxical as it promotes food seeking but also increases energy expenditure. Despite its importance in fitness, the genetic contributions to SIH as a behavioral trait remains unexplored. Here, we examined SIH in the Drosophila melanogaster Genetic Reference Panel (DGRP) and performed genome-wide association studies. We identified 23 significant loci, corresponding to 14 genes, significantly associated with SIH in adult Drosophila. Gene enrichment analyses indicated that genes encoding ion channels and mRNA binding proteins (RBPs) were most enriched in SIH. We are especially interested in RBPs because they provide a potential mechanism to quickly change protein expression in response to environmental challenges. Using RNA interference, we validated the role of syp in regulating SIH. syp encodes Syncrip (Syp), an RBP. While ubiquitous knockdown of syp led to semi-lethality in adult flies, adult flies with neuron-specific syp knockdown were viable and exhibited decreased SIH. Using the Temporal and Regional Gene Expression Targeting (TARGET) system, we further confirmed the role of Syp in adult neurons in regulating SIH. To determine how syp is regulated by starvation, we performed RNA-seq using the heads of flies maintained under either food or starvation conditions. RNA-seq analyses revealed that syp was alternatively spliced under starvation while its expression level was unchanged. We further generated an alternatively-spliced-exon-specific knockout (KO) line and found that KO flies showed reduced SIH. Together, this study demonstrates a significant genetic contribution to SIH as a behavioral trait, identifies syp as a SIH gene, and highlights the significance of RBPs and post-transcriptional processes in the brain in regulating behavioral responses to starvation.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Metabolismo Energético/genética , Estudio de Asociación del Genoma Completo/métodos , Proteínas de Unión al ARN/genética , Inanición , Alelos , Empalme Alternativo , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Regulación de la Expresión Génica , Frecuencia de los Genes , Locomoción/genética , Masculino , Neuronas/citología , Neuronas/metabolismo , Polimorfismo de Nucleótido Simple , Interferencia de ARN , Proteínas de Unión al ARN/metabolismo , RNA-Seq/métodos
19.
Neuron ; 105(2): 293-309.e5, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31901304

RESUMEN

The molecular mechanisms that govern the maturation of oligodendrocyte lineage cells remain unclear. Emerging studies have shown that N6-methyladenosine (m6A), the most common internal RNA modification of mammalian mRNA, plays a critical role in various developmental processes. Here, we demonstrate that oligodendrocyte lineage progression is accompanied by dynamic changes in m6A modification on numerous transcripts. In vivo conditional inactivation of an essential m6A writer component, METTL14, results in decreased oligodendrocyte numbers and CNS hypomyelination, although oligodendrocyte precursor cell (OPC) numbers are normal. In vitro Mettl14 ablation disrupts postmitotic oligodendrocyte maturation and has distinct effects on OPC and oligodendrocyte transcriptomes. Moreover, the loss of Mettl14 in oligodendrocyte lineage cells causes aberrant splicing of myriad RNA transcripts, including those that encode the essential paranodal component neurofascin 155 (NF155). Together, our findings indicate that dynamic RNA methylation plays an important regulatory role in oligodendrocyte development and CNS myelination.


Asunto(s)
Adenosina/análogos & derivados , Diferenciación Celular/fisiología , Metiltransferasas/fisiología , Vaina de Mielina/fisiología , Oligodendroglía/citología , Oligodendroglía/fisiología , ARN Mensajero/metabolismo , Adenosina/metabolismo , Animales , Moléculas de Adhesión Celular/metabolismo , Recuento de Células , Linaje de la Célula , Células Cultivadas , Femenino , Masculino , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Ratones Transgénicos , Factores de Crecimiento Nervioso/metabolismo , Células Precursoras de Oligodendrocitos/fisiología
20.
Hum Mol Genet ; 28(18): 3126-3136, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31261385

RESUMEN

Pyridox (am) ine 5'-phosphate oxidase (PNPO) is a rate-limiting enzyme in converting dietary vitamin B6 (VB6) to pyridoxal 5'-phosphate (PLP), the biologically active form of VB6 and involved in the synthesis of neurotransmitters including γ-aminobutyric acid (GABA), dopamine, and serotonin. In humans, PNPO mutations have been increasingly identified in neonatal epileptic encephalopathy and more recently also in early-onset epilepsy. Till now, little is known about the neurobiological mechanisms underlying PNPO-deficiency-induced seizures due to the lack of animal models. Previously, we identified a c.95 C>A missense mutation in sugarlethal (sgll)-the Drosophila homolog of human PNPO (hPNPO)-and found mutant (sgll95) flies exhibiting a lethal phenotype on a diet devoid of VB6. Here, we report the establishment of both sgll95 and ubiquitous sgll knockdown (KD) flies as valid animal models of PNPO-deficiency-induced epilepsy. Both sgll95 and sgll KD flies exhibit spontaneous seizures before they die. Electrophysiological recordings reveal that seizures caused by PNPO deficiency have characteristics similar to that in flies treated with the GABA antagonist picrotoxin. Both seizures and lethality are associated with low PLP levels and can be rescued by ubiquitous expression of wild-type sgll or hPNPO, suggesting the functional conservation of the PNPO enzyme between humans and flies. Results from cell type-specific sgll KD further demonstrate that PNPO in the brain is necessary for seizure prevention and survival. Our establishment of the first animal model of PNPO deficiency will lead to better understanding of VB6 biology, the PNPO gene and its mutations discovered in patients, and can be a cost-effective system to test therapeutic strategies.


Asunto(s)
Encefalopatías Metabólicas/diagnóstico , Encefalopatías Metabólicas/genética , Hipoxia-Isquemia Encefálica/diagnóstico , Hipoxia-Isquemia Encefálica/genética , Mutación , Fenotipo , Piridoxaminafosfato Oxidasa/deficiencia , Convulsiones/diagnóstico , Convulsiones/genética , Alimentación Animal , Animales , Conducta Animal , Encéfalo/metabolismo , Encéfalo/fisiopatología , Encefalopatías Metabólicas/metabolismo , Modelos Animales de Enfermedad , Drosophila melanogaster , Epilepsia , Técnicas de Silenciamiento del Gen , Genes Letales , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Hipoxia-Isquemia Encefálica/metabolismo , Redes y Vías Metabólicas , Piridoxaminafosfato Oxidasa/genética , Piridoxaminafosfato Oxidasa/metabolismo , Interferencia de ARN , Convulsiones/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...